A Free-Space Adaptive FMM-Based PDE Solver in Three Dimensions

نویسندگان

  • M. H. Langston
  • L. Greengard
  • D. Zorin
چکیده

We present a kernel-independent, adaptive fast multipole method (FMM) of arbitrary order accuracy for solving elliptic PDEs in three dimensions with radiation and periodic boundary conditions. The algorithm requires only the ability to evaluate the Green’s function for the governing equation and a representation of the source distribution (the right-hand side) that can be evaluated at arbitrary points. The performance is accelerated in three ways. First, we construct a piecewise polynomial approximation of the right-hand side and compute far-field expansions in the FMM from the coefficients of this approximation. Second, we precompute tables of quadratures to handle the near-field interactions on adaptive octree data structures, keeping the total storage requirements in check through the exploitation of symmetries. Third, we employ shared-memory parallelization methods and load-balancing techniques to accelerate the major algorithmic loops of the FMM. We present numerical examples for the Laplace, modified Helmholtz and Stokes equations.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Matrix-free Preconditioner for the Helmholtz Equation based on the Fast Multipole Method

Fast multipole methods (FMM) were originally developed for accelerating N body problems for particle-based methods. FMM is more than an N -body solver, however. Recent efforts to view the FMM as an elliptic Partial Differential Equation (PDE) solver have opened the possibility to use it as a preconditioner for a broader range of applications. FMM can solve Helmholtz problems with optimal O(N lo...

متن کامل

Fast Multipole Preconditioners for Sparse Matrices Arising from Elliptic Equations

Among optimal hierarchical algorithms for the computational solution of elliptic problems, the Fast Multipole Method (FMM) stands out for its adaptability to emerging architectures, having high arithmetic intensity, tunable accuracy, and relaxable global synchronization requirements. We demonstrate that, beyond its traditional use as a solver in problems for which explicit free-space kernel rep...

متن کامل

A Parallel Adaptive Cartesian PDE Solver Using Space-Filling Curves

In this paper, we present a parallel multigrid PDE solver working on adaptive hierarchical cartesian grids. The presentation is restricted to the linear elliptic operator of second order, but extensions are possible and have already been realised as prototypes. Within the solver the handling of the vertices and the degrees of freedom associated to them is implemented solely using stacks and ite...

متن کامل

Adaptive BDDC in three dimensions

The adaptive BDDC method is extended to the selection of face constraints in three dimensions. A new implementation of the BDDC method is presented based on a global formulation without an explicit coarse problem, with massive parallelism provided by a multifrontal solver. Constraints are implemented by a projection and sparsity of the projected operator is preserved by a generalized change of ...

متن کامل

An Adaptive Fast Multipole Boundary Element Method for Poisson−Boltzmann Electrostatics

The numerical solution of the Poisson-Boltzmann (PB) equation is a useful but a computationally demanding tool for studying electrostatic solvation effects in chemical and biomolecular systems. Recently, we have described a boundary integral equation-based PB solver accelerated by a new version of the fast multipole method (FMM). The overall algorithm shows an order N complexity in both the com...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008